花2个月拆一辆特斯拉Model 3!37万字详解所有部件

发布时间:2024-09-01 13:07:38 来源:工程案例

       

  特斯拉热管理系统经历 4代发展,在结构集成上不停地改进革新。按照时间序列和匹配车型, 特斯拉电动汽车热管理系统技术能分为 4 代。特斯拉第一代车型传承于燃油车热管理的 传统思路,各个热管理回路相对独立。第二代车型中引入四通换向阀,实现电机回路与电 池回路的串并联,开始结构集成。第三代 Model 3 开始做统一的热源管理,引入电机堵 转加热,取消水暖 PTC,并采用集成式储液罐,集成冷却回路,简化热管理系统结构。第 四代 Model Y 在结构上采用高度集成的八通阀,对多个热管理系统部件进行集成,以实现 热管理系统工作模式的切换。从特斯拉车型的演进来看,其热管理系统集成度不断提升。

  特斯拉第一代热管理系统不同回路相对独立。特斯拉第一代热管理系统应用于 Tesla Roadster 车型,包含电机回路、电池回路、HVAC(空调暖通)回路和空调回路,各回路相对独立,与传统内燃机汽车架构类似。电机回路上布置驱动电机、电子控制单元、电子水泵、膨胀水箱等,对电机回路上电子部件进行散热。电池回路上布置动力电池、热交换器、膨胀水箱、高压 PTC 等,实现高低温下电池性能的稳定。HVAC 回路布置散热器、高 压 PTC 等,调节乘员舱温度。空调系统布置压缩机、冷凝器、膨胀阀和热交换器等,通过压缩机进行制冷循环,并通过热交换器对系统回路和 HVAC 回路进行制冷。

  布置控制阀,结构上初步集成。电机回路和 HVAC 回路上布置有 3 个控制阀,实现电 机回路余热为 HVAC 回路加热的目的,在低温度的环境下,通过 HVAC 回路的散热器对鼓风机 吸入的低温空气进行预加热,节约高压 PTC 消耗的电能。

  第二代热管理系统引入四通阀,实现电池回路和电机回路的交互。在整车冷启动工况 下,当电池系统有加热需求,可调节四通阀开启状态,实现电机回路和电池回路串联,使 用电机系统预热为电池系统来进行加热,减少高压 PTC 为电池加热消耗电能。当电池有冷 却需求时,如电机回路温度低于电池回路,则通过电机回路散热器为电池系统冷却。如整车工况、两系统工作状态不满足串联模式热管理时,则控制四通阀实现并联,进行独立控 制。

  取消 HVAC 回路,新增三通阀短接低温散热器。第二代热管理系统在空调系统上引入 乘员舱内蒸发器和冷媒-水热交换器(Chiller),取消 HVAC 冷却回路,实现空调系统对乘 员舱的直接制冷过程。当乘员舱有采暖需求时,采用高压风暖 PTC 加热。除此之外,外 置低温散热器上加设三通阀,实现其在不需要散热情况下的短接,实现部分余热回收。

  第二代热管理系统相较第一代系统实现拓扑结构的升级,各热管理回路之间实现一定 程度的交互。

  第三代热管理系统结构设计凸显集成,统一热源管理加强系统联系。Model 3 在拓扑 结构上相较第二代热管理系统没有本质差别,但在驱动电机和储液罐结构实现技术创新, 在结构设计上更加集成,实现三个管路的热量交换。在该系统下,取消电池回路的高压 PTC, 利用电机电控设备废热加热,同时功率电子冷却系统与空调系统链接,节省系统成本。

  驱动电机采用油冷电机,与电机回路通过热交换器实现热量传递。电机新增低效制热 模式,通过电机控制器新的控制方式,可实现电机发热模式。通过四通阀控制,实现与电 池回路的串联,采用电机低效制热模式用于电池回路的加热,相应的取消电池回路的高压 PTC,减少成本。

  引入冷却液储罐发挥整合优势,集成式储液罐设计进一步联系各系统。采用集成式储 液罐(Superbottle)设计,实现膨胀水箱与热管理系统的加热与冷却部件高度集成。Superbotlle 核心部件为冷却液储罐 CR(Coolant Reservoir),此外该集成模块包含四通 阀、电机水泵、电池水泵、Chiller 热交换器、散热器和执行器等部件。1)冷却模式下, 冷却液在抽取至冷却液储存罐中时,分别在两条路径由 Chiller 和散热器冷却,实现对电池 和对电机设备及电机的循环冷却。2)加热模式下,电池与功率电子管路切换成串联电路, 冷却液进入管理模块、驱动单元的油冷却热交换器吸收其工作中所产生的热量,经过集成 阀流经 chiller 为电池加热。

  第四代热管理系统使用八通阀集成冷却和制热回路,实现整车热管理集成化。Model Y 的热管理系统中使用了一个八通阀(Octovalve),引入热泵空调系统、空调系统和鼓风机 电机的低效制热模式,将整车热管理集成化,并通过车载计算机精确的控制各元器件的运 转情况。冷却环节,沿用三代冷却剂回路方案。通过冷却液循环系统,冷却液在各系统之间流动。在制热环节,采用热泵空调系统通过热交换器和管路连接,与电池回路和电机回 路进行耦合,实现整个热管理系统的热量交互。

  八通阀设计下能量效率提升,系统集成减少相关成本。通过八通阀设计,打通了传统热泵 空调、电池系统、动力系统,实现 12 种制热模式和 3 种制冷模式,使用了八通阀的 Model Y 相比 Model 3 能量利用效率提高了 10%。动力系统电驱回路水冷冷凝器可以在冬天将三 电系统废热回收利用到热泵系统,为乘客舱服务。以压缩机全功率工作等同 PTC 进行制 热,实现了 R134a 制冷剂在零下 10C 以下没办法实现热泵功能的代替方案,将压缩机一 物多用节省零件成本。高度集成化零件缩短零件流道,降低能耗,方便装配,同时将 OEM 的装配工序集中下放到 Tier1 供应商,节省人工和产线成本。

  技术持续创新,特斯拉热管理系统集成逐渐深化。综合看来,特斯拉热管理通过四通 阀、集成式储液罐、热泵系统和八通阀等技术创新,实现结构集成,提升了系统的能量利 用效率。以加热方式为例,特斯拉从仅利用电池电能产热(PTC),到利用电池产热+利用 电机电控余热,再到电池产热+车内各可产热的部件+环境产热,通过整车热源集成及技术 升级完善热能利用。

  搭载二氧化碳热泵和水路热力阀,实现电池电机部分集成。大众汽车在 ID 系列车型 上搭载了二氧化碳热泵空调,其结构设计延用了普通热泵的结构,其架构主要是采用直冷直 热架构,制冷蒸发器与热泵冷凝器立即进入乘员舱,并采用电磁阀和双向电子膨胀阀的组 合方式对制冷剂回路来控制,配合舱内 PTC 实乘员舱温度条件。制冷剂回路使用 CO2 冷媒水路循环使用三通阀、水路热力阀连接电池和电机,利用电机余热加热电池,降低电 池制热下水路高压 PTC 需求,但制冷剂回路与冷却水路之间的交互较少,相对独立,未 采用热泵加热电池的模式。

  2022 款全新 ES8 采用热泵系统。蔚来 ES6 采用智能热泵系统。在制热模式下,系统 从低温度的环境中吸取热量,并通过回路输送乘客舱,以达到高效制热效果。2022 年 4 月 19 日,蔚来汽车宣布 2022 款全新蔚来 ES8 正式开启交付,全新蔚来 ES8 不再使用 PTC 热 敏电阻的空调加热方式,使用了跟蔚来 ES6 一样的热泵制热方式。

  利用电池、电机废热提供冬季空调系统,整车集成逐步提升。蔚来在其公布的专利 中说明了一种采用四通阀链接空调回路、电池回路、电机回路的方法。其中,空调系统包 含第一和第三通道,第二和第四通道分别串联至电池热管理系统和电机热管理系统,通过 四通阀链接四个通道,实现电池和电机废热提供乘员舱,以降低冬季耗电。该方法实现彼此独立分系统的部分集成。

  小鹏 P7 储液罐一体化设计,四通阀集成实现整车热循环。小鹏 P7 为小鹏汽车的第2款纯电车型,整车热管理系统采用一体化储液罐设计和单 PTC 加热方案,利用一个四通 阀实现整车系统级的热循环。在储液罐设计上,小鹏 P7 采用电机、电池、乘客舱三者的 膨胀罐一体化设计,变为膨胀罐总成,减少零部件数量。同时利用四通阀,将电机冷却水 路与电池温控水路串接,使用电机余热加热电池,降低系统能量损失。

  研发朝向系统进一步集成与能量利用。小鹏在其专利中公开了一种热管理集成单元, 包括流道板、泵组件、阀组件、水冷冷凝器、水水换热器和电池冷却器。阀组件连通动力 电池的出口和电机水泵的进口,并且连通电池水泵的进口和电驱部件的出口,电池水泵和 /或电机水泵将冷却液输送至电驱部件以吸收电驱部件的热量,被加热后的冷却液流经动力 电池以对动力电池进行保温,实现低温工况下电驱部件热量对动力电池进行保温,对电驱 部件的废热进行利用。

  一体化热管理逐渐完备。目前,比亚迪 e 平台 3.0 在热管理上采取了类似特斯拉集成 化的阀岛方案,对冷媒回路进行了大规模集成。采用集成的热泵技术,将驾驶舱制暖预热 交给热泵电动空调系统和来自“8 合 1”电驱电控系统的余热,取消对应 PTC 模组,动 力电池低温需求则由热泵电空调(包含风暖 PTC)支持,冷媒直接换热,一体化程度提高。

  国内车厂竞相追赶,热管理集成为行业共识。从设计逻辑横向对比来看,国内各车厂 都不同程度地向类似特斯拉所采用的集成式热管理系统迭代,采取四通阀、热泵系统等方 式管理车内热源或冷却剂,通过整车或部分系统集成提高热管理效率。目前,国内各车厂 热管理所处阶段类似于特斯拉第二或第三代热管理系统,呈现追赶特斯拉的特点。

  电子膨胀阀为电动车热管理精细化管控的重要部件。电子膨胀阀由控制器、执行器和 传感器 3 部分构成。由于电子膨胀阀的感温部件为热电偶或热电阻,可以在低温下准确反 映出温度的变化,提供更准确的流量调节,同时电子膨胀阀流量控制范围大、调节精细, 弥补了毛细管和热力膨胀阀不能调节的缺点,更适合电动车电子化与热管理精细化的管控。

  车用电子膨胀阀技术难点在于稳定性、精度要求高,同时阀件工艺存在门槛。1)稳 定性要求高:车用电子膨胀阀需安装在高速行驶、震动等相对动态场景,要求运行稳定、 耐震动、轻量化、宽温度范围适用、高可靠性和安全性,且空间紧凑,要求设计体积更小、 安装方便和可靠。2)精度要求高:车用的热管理系统比目前家用或商用空调系统更为复 杂,特别是在电池的热管理上对电子膨胀阀有更高的精度要求。3)工艺技术要求高:一般来 说,一只阀件由几十个精密细小的零部件构成,需 30 余个工序制作,且在制造中需满足 公差极限和测试要求,工艺技术要求高。受限于电子膨胀阀本身技术壁垒,全球电子膨胀阀市 场呈现寡头垄断局面,2021 年三花智控、不二工机和盾安环境电子膨胀阀份额合计约 90%。

  八通阀可调节各回路,实现热管理效率提升。八通阀能改变 9 个管路的链接方式, 以此来实现不同循环回路,并进一步形成 12 种制热模式和 3 种制冷模式。举例来说,1)当 电池系统温度高于循环中其他部件(DCDC、电机控制器、电机等)温度时,电池循环系 统和电机循环系统并联。2)当电机循环系统温度高于电池系统时,两系统串联,实现余 热管理。3)当电池与乘员舱有制热需求时,分别可通过电机堵转快速加热,热泵系统通 过水箱散热器吸收环境热。

  特斯拉热管理阀类向高度集成方向演进,以更复杂管理控制策略实现热量分配。汽车 各回路热管理的集成需要通过各类阀门控制回路的串并联状态或流道。特斯拉在阀门上不 断发展更为创新结构,通过依靠复杂的控制策略来实现热量的合理分配,向高集成方向发展。

  1)Model S/Y 四通阀:特斯拉在第二代热管理系统上首次引入四通阀结构,实现了电机回路与电池回路的串并联切换。

  2)Superbottle:到了特斯拉第三代热管理系统,在结 构上通过Superbottle 将四通阀、散热器、水泵等集成,实现电池与功率电子管路串并联、 电池与电机回路的交互,与第二代相比则集成更多分系统。

  3)八通阀:第四代的八通阀 可看作是 2 个四通阀的集成,将空调系统和三电全部集成,可更有效地实现热管理系统功 能的转换。特斯拉以最大限度发挥自身系统模块设计、集成和控制能力,将热管理系统向更复 杂管理策略、高度集成方向演进。